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Abstract The mean field configuration interaction method has been developped in
recent years both for electrons and molecular vibrations. The present article is the first
part of a series, which provides complements and further details on this topics in the
form of a “frequently asked questions” text. It focuses on the molecular vibrational
problem.
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1 Introduction

The mean field configuration interaction (MFCI) method has been developed origi-
nally by Cassam–Chenaï and Liévin for molecular vibrations and was called vibra-
tional MFCI (VMFCI) [1]. It has proved extremely powerful and flexible to solve the
molecular, vibrational, stationary Schrödinger equation [2–4]. This has encouraged
one of the authors to develop a version of the MFCI method for fermions. The lat-
ter has been implemented for molecular electrons in the computer code TONTO and
called the “electronic MFCI” (EMFCI) method [5–8]. In contrast with the VMFCI
method implemented in the computer code CONVIV [9,10] in full generality, the
EMFCI method implemented in TONTO is restricted at present to the case where the
electrons are grouped in pairs, that is to say, are represented by antisymmetrized prod-
ucts of geminals. This particular case of EMFCI is referred to as the geminal MFCI
(GMFCI) method. In principle, MFCI could also be developped for bosons.
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Both the VMFCI and the EMFCI have been presented in seminars and at interna-
tional conferences, in particular at the “international meeting on Mathematical Meth-
ods for Ab Initio Quantum Chemistry” held in Nice, annually since 2005. We have
gathered in this article, presented in the form of a “ frequently asked questions” (FAQ)
text, many of the questions rised during discussions having taken place at these occa-
sions, or elsewhere. The purpose of the article is to clarify certain points addressed
too succinctly in previous publications and to present some subtleties of the MFCI
method, or of its computer implementation, never mentioned before. Some questions
actually go beyond the mere scope of the MFCI method and touch upon problems
inherent in variational methods, in general.

The article is organized as follows: We begin with a brief account of the VMFCI
method, in order to make the article accessible to non-specialists. The EMFCI method
is not explicitly formulated in this first part which focuses on the VMFCI method,
however the main steps follow those of the VMFCI. Then, we begin the faq section
itself. In one question, differences between the VMFCI and EMFCI methods and
algorithms are outlined.

Part II of this work will be mainly devoted to the EMFCI method.

2 The VMFCI method explained

The VMFCI method consists in performing vibrational configuration interactions of
some degrees of freedom (DOFs) in the mean field of the others. The aim of the
method is to keep the finite basis sets used in successive vibrational configuration
interaction (VCI) within manageable sizes, by contracting groups of DOFs together,
as in the traditional contraction method [11–14]. However, the power of the method
comes from the mean field term added to the group Hamiltonians not present in the
traditional approach.

2.1 Partitions of DOFs

A VMFCI step starts with a partition, P , of the nvib vibrational degrees of freedom
into n P subsets:

P =(I1, I2, . . . , In P )=({i1
1 , i1

2 , . . . , i1
k1

}, {i2
1 , i2

2 , . . . , i2
k2

}, . . . , {in P
1 , in P

2 , . . . , in P
kn P

})

Using partition P the vibrational Hamiltonian can be written as:

Hvib = h0 +
n P∑

γ1=1

hγ1(Iγ1)

+
∑

1≤γ1<γ2≤n P

hγ1,γ2(Iγ1)hγ1,γ2(Iγ2)

+ · · · + h1,2,...,n P (I1)h1,2,...,n P (I2) . . . h1,2,...,n P (In P )
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where hγ1,γ2,...,γk (Iγl ) denotes a vibrational operator that only depends upon operators
acting on DOFs in subsets Iγl .

Then, one defines a possibly coarser partition, Q = (J1, J2, . . . , JnQ ), satisfying
nQ ≤ n P and ∀γ ∈ {1, . . . , n P }, ∃α ∈ {1, . . . , nQ} such that Iγ ⊆ Jα .

For such a step, we call “contractions” the subsets Jα , and “components of contrac-
tion Jα” the subsets Iγ such that Iγ ⊆ Jα . When several VMFCI steps are performed,
the components of one step are the contractions of the previous step. Note that the
case Q = P is allowed. Iterating the same partition until self-consistency lead to
vibrational self-consistent field configuration interaction (VSCFCI) methods, which
generalize the well-known VSCF method [15,16]. Such a generalization has been con-
sidered by Bowman and Gazdi [17] but not in the frame of an iterated VCI approach.

2.2 Product basis sets

Let us consider a given contraction Jα that we will call “active”. The other contractions
are called “spectators”. We assume that contraction Jα has β components:

Jα = Iγ1 ∪ Iγ2 ∪ · · · ∪ Iγβ

=
{

iγ1
1 , . . . , iγ1

kγ1
, . . . , i

γβ
1 , . . . , i

γβ
kγβ

}

= {
jα1 , . . . , jαlα

}
with lα = kγ1 + · · · + kγβ .

Having a basis set {φmγ

Iγ
}mγ ∈{1,...,dγ }, spanning an Hilbert subspace of dimension,

say dγ , for each component Iγ , we build for contraction Jα , a so-called “product

basis set”, {�Mα

Jα
}

Mα∈{1,...,Dα}, spanning an Hilbert subspace of dimension Dα , by
constructing product functions of the form:

�
Mα

Jα
=

⊗

Iγ⊆Jα

φ
mγ

Iγ
(1)

or more explicitly, writing variable dependencies:

�
Mα

Jα
(qi

γ1
1
, . . . , qi

γ1
kγ1

, . . . , q
i
γβ
1
, . . . , q

i
γβ
kγβ

) = �
Mα

Jα
(q jα1

, . . . , q jαlα
)

=
∏

Iγ⊆Jα

φ
mγ

Iγ
(qiγ1

, . . . , qiγkγ
)

with Mα = (mγ1 , . . . ,mγβ ).
In CONVIV, the process is initialized with a basis set of modals, that is to say, func-

tions of a single vibrational degree of freedom, but this constraint can be walked around
if groups of DOFs are contracted from the start. The modal basis available at pres-
ent in CONVIV either are built from eigenfunctions of one dimensional Schrödinger
equations with various potential such as a harmonic potential (with arbitrary center

123



J Math Chem (2012) 50:652–667 655

and frequency), a Morse potential [18], a Trigonometric Pösch–Teller (TPT) potential
[19], a Kratzer potential [20], or are Chebychev polynomials.

By convention, the eigenstates are numbered in increasing order with natural num-
bers starting with 0, so the vector index, Mα = (0, . . . , 0), always corresponds to
product of ground state functions.

The dimension of the basis set for the contraction Jα can be different from the
product of dimensions of its component’s basis sets because of possible basis function
truncations, usually performed according to some energy criteria (vide infra).

2.3 Mean field Hamiltonian

For the active contraction Jα , we define a partial Hamiltonian, Hα , by grouping all the
terms in Hvib involving the DOFs in components Iγl of Jα:

Hα = h0 +
∑

γ1
such that
Iγ1⊆Jα

hγ1(Iγ1)+
∑

γ1<γ2
such that

Iγ1 ,Iγ2 ⊆Jα

hγ1,γ2(Iγ1)hγ1,γ2(Iγ2)

+ · · · +
∑

γ1<···<γβ
such that

Iγ1 ,...,Iγβ⊆Jα

hγ1,...,γβ (Iγ1) · · · hγ1,...,γβ (Iγβ ) (2)

In contrast with the original contraction method, a mean field term accounting for
the average effect of all the spectator modes, is added to this partial Hamiltonian:

H̃α = Hα +
〈

⊗

Iγ�Jα

φ0
Iγ |Hvib − Hα|

⊗

Iγ�Jα

φ0
Iγ

〉
(3)

A VMFCI calculation consists in performing a VCI [21] for the mean field Ham-
iltonians, Eq. (3), in the product basis sets, Eq. (1). In CONVIV, at any one step, a
VMFCI is performed for each contraction of the Q-partition.

Thereby, we obtain new basis sets {φmα

Jα
}mα∈{1,...,Dα} of dimension Dα made of

eigenvectors of the mean field Hamiltonians to construct the product basis sets of
the next step. Their associated eigenvalues can be used to truncate the product basis
sets according to energy criteria: either the individual component basis functions are
selected if their associated eigenvalue is less than a given threshold, or a product func-
tion is selected if the sum of its component eigenvalues is less than a given threshold.
Both criteria can be applied jointly.

Note that in CONVIV, it is possible to control the number of eigenpairs calculated
by the diagonalizer when solving the mean field Hamiltonian eigenvalue problem. So,
in fact, the dimension of the new basis set for contraction Jα , can be less than Dα .
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Question 1: could the VMFCI method, although termed “vibrational”,
be applied to the Hamiltonian of any system made of distinguishable degrees
of freedom (DOFs), such as the molecular Hamiltonian of nuclear motion, includ-
ing rotational and possibly translational DOFs?

Yes, in fact the VMFCI method, and the computer code CONVIV, can be applied to
any set of distinguishable degrees of freedom (DOFs). Test calculations, yet unpub-
lished, with a pseudo-rotation internal motion DOF or with rotational motion of the
whole molecule DOFs coupled with the vibrational DOFs have, actually, already been
performed with the code CONVIV.

Question 2: if the answer to question 1 is yes, why not employing the VMFCI
method for the complete nuclear motion Hamiltonian in Cartesian coordinates,
which assumes a particularly simple and universal form?

In principle traditional quantum mechanics does not depend upon its representation.
So, it is tempting to use the simple Cartesian Hamiltonian. Test calculations can eas-
ily be carried out with CONVIV. However, the results are disastrous, even if a uni-
tary transformation over the Cartesian DOFs is performed to make appear rectilinear
vibrational, rotational and translational DOFs, as in the standard normal coordinate
approach. Rectilinear rotational DOFs are absolutely not adapted to describe the proper
rotational motion: the kinetic part of the Cartesian Hamiltonian is very different from
that of a rigid rotator Hamiltonian, for example, and the potential expansion in terms
of powers of these DOFs converges too poorly to produce a spectrum that resembles a
rotational spectrum, when it is truncated. Furthermore, when using the MFCI method,
the fact that the rotational DOFs are poorly described, affects the vibrational DOFs
that are optimized in the mean field of the latter.

Question 3: then, can one retrieve the form of the exact (that is non truncated)
potential involving the rectilinear rotational coordinates from the back-transfor-
mation of the Hamiltonian in the Eckart frame to the Cartesian Hamiltonian in
the laboratory frame, and deal with this exact potential?

The problem is that, in this potential, the rectilinear rotational coordinates will be
coupled to the other rectilinear coordinates in a non separable manner, (that is to say,
it cannot be cast in the form of a finite sum of products of one-DOF factors). A priori,
this will not favor an effective use of the MFCI approach.

Question 4: The variational principle insures that the energy can only decrease
at each VMFCI step. This is provided, one performs a VMFCI calculation for a
single active contraction per step. However, in CONVIV, one performs a VMFCI
calculations for all the contractions of a given partition at the same step, using
spectator ground states functions of the previous step. Is it to speed up the con-
vergence?
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Table 1 ZPE convergence for a VMFCI contraction-truncation scheme in 12CH4

ZPE in cm−1

Step type ν1 (10 bf) ν3 (220 bf) ν2 (120 bf) ν4 (680 bf)

MSP-VMFCI 9,736.817797 9,817.832496 9,830.213859 9,828.829953
MSP-VMFCI 9,724.937053 9,721.80854 9,724.971052 9,724.624952
MSP-VMFCI 9,721.492681 9,721.614393 9,721.617023 9,721.613361
MSP-VMFCI 9,721.494016 9,721.489747 9,721.494231 9,721.493759
MSP-VMFCI 9,721.489335 9,721.489504 9,721.489515 9,721.489508
MSP-VMFCI 9,721.489334 9,721.489328 9,721.489335 9,721.489334
MSP-VMFCI 9,721.489327 9,721.489327 9,721.489327 9,721.489327
VMFCI(ν1 − ν3;48,000) 9,704.716970 (1,781 bf) 9,721.489327 9,721.489327
VMFCI(ν1 − ν3;22,000) 9,704.716970 (330 bf) 9,704.716867 9,704.716590
VCI(18349) 9,698.841643 (52096 bf)

At step 0, the initial harmonic oscillator (HO) product basis set had 179,520,000 functions. MSP stands for
minimal symmetry preserving, and correspond to the partitioning of the 9 DOFs into the 4 spectroscopic
modes, ν1, ν2, ν3, ν4 of degeneracy 1, 2, 3, 3 respectively. This partition is used from step 0 to 6. Then, at
steps 7 and 8, the two stretching modes, ν1, and ν3, are contracted together with truncation threshold on the
sum of the product basis function energy at 48,000 and 22,000 cm−1 , respectively. This amounts to 1,781
(resp. 330) basis functions (bf) in the VMFCI calculation of the stretching contraction (4 DOFs). Finally,
in the last step, all DOFs are contracted in a VCI step. The converged digits for a given, iterated, partition
are in bold. The ZPE decreases for all contractions of all partitions, except for mode 1 at step 3, where the
ZPE slightly increases before decreasing again to even lower than the ZPE of the other modes. Such an
increase is a very rare phenomenon in VMFCI calculations from our numerical experience. The tabulated
numbers were obtained with the transformed potential energy surface of Lee, Martin and Taylor, [34], used
in previous studies [1,2,9]

The answer is yes, the variational principle is sacrified to speed up convergency
in the CONVIV computer code. So, it might happen that a zero point energy (ZPE)
increases. In actual computations so far, we have noticed only one occurence of ZPE
increase instead of decrease in successive CONVIV calculation steps. As can be seen
in Table 1, this increase was only by a small amount, and the convergence was again
satisfactory at the next step.

However, the situation is different in the case of the EMFCI method, where it is
often observed that after a few iterations, the increase of the ZPEs of different elec-
tron groups blocks the convergence of the calculation, when the EMFCI algorithm is
implemented in the CONVIV way. This is because the optimized ground state �(1)0

of, say electron group number 1, affects the ground state of group 2, �(2)0 , not only
by the mean field it produces, but also by modifying its effective contribution to the
antisymmetric product function of the total ground state, �(1)0 ∧ �

(2)
0 . (We use the

“exterior” or “wedge product” notation [22].)
Let us consider a not very realistic, yet instructive, case example. Suppose that the

exact wave function of a 4-electron system is, ψ1 ∧ ψ̄1 ∧ ψ2∧ψ̄3+ψ3∧ψ̄2√
2

, and that we

start from an SCF guess of the formψ1∧ψ̄1∧ψ2 ∧ψ̄2 in a GMFCI calculation.ψ1, ψ2
and ψ3 are 3 orthonormal orbitals spanning our basis set. At step 0, if one starts with
group 1 active, using the mean field associated to ψ2 ∧ ψ̄2, one will find a solution

of the form, �(1)0 = a11ψ1 ∧ ψ̄1 + a33ψ3 ∧ ψ̄3 + a13
ψ1∧ψ̄3+ψ3∧ψ̄1√

2
, (geminal basis
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functions containing ψ2 or ψ̄2, are not considered with such a spectator geminal).
Whereas, if one starts with group 2 active, using the mean field associated to ψ1 ∧ ψ̄1,

one will obtain, �(2)0 = ψ2∧ψ̄3+ψ3∧ψ̄2√
2

. With the algorithm currently implemented in
TONTO, both active groups are considered at step 0. The one giving the lowest ground
state energy is retained and its new ground state is combined with the old spectator
ground state that has served to build the mean field Hamiltonian. So, the exact solu-
tion is found immediately, since it corresponds to the VMFCI calculation with group
2 active. With an algorithm à la CONVIV one would combine the new ground states
of both groups:

(
a11ψ1 ∧ ψ̄1 + a33ψ3 ∧ ψ̄3 + a13

ψ1 ∧ ψ̄3 + ψ3 ∧ ψ̄1√
2

)
∧ ψ2 ∧ ψ̄3 + ψ3 ∧ ψ̄2√

2

= a11ψ1 ∧ ψ̄1 ∧ ψ2 ∧ ψ̄3 + ψ3 ∧ ψ̄2√
2

− a13ψ3 ∧ ψ̄3 ∧ ψ1 ∧ ψ̄2 + ψ2 ∧ ψ̄1

2
,

(4)

which is not a variational procedure and which does not give the exact solution.
This sort of negative “interference” between wave functions obtained by separate

GMFCI calculations for different groups is not possible for a VMFCI wave function,
because its tensor product components cannot mix in the same way. Still, the vari-
ational principle is lost if the mean field averaging is performed from step-(n − 1),
approximate, spectator, ground states for all contractions of the step-n partition, and
this might result in a ZPE increase. However, as a matter of fact, this has never been
an issue, when using CONVIV, so far.

Question 5: can one focus on a given spectral window with VMFCI?

This is a general issue for any variational method. The answer is a priori no for a given
Hamiltonian operator [23], because if there are holes in the lower part of the computed
spectrum, the basis functions designed to describe the eigenfunctions of the spectral
window of interest, may indeed serve to describe the missing eigenfunctions at the
expense of the eigenfunctions of interest. An example of such a phenomenon will be
provided in the answer to Question 10. To circumvent this limitation, one can think
of filtering techniques, which consist in transforming the Hamiltonian, H → f (H),
by applying a function, f , possibly parametrized by the energy bounds of the win-
dow of interest, which carries the selected levels at the bottom of the spectrum of the
transformed Hamiltonian, (see Wyatt and coworkers for references and applications
to vibrational spectroscopy [24,25]).

However, if the excited states of interest correspond to excitations of a given set,
S, of DOFs, then the flexibility of the VMFCI method can be profitably used. One
can for example avoid to contract the DOFs in S with the DOFs not in S, and then
truncate drastically the basis sets of contractions containing only DOFs not in S. This
may produce holes in the spectrum, but in general the latter will not affect the excited
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states of interest. Of course, there should be no resonance between DOFs in S and
DOFs not in S below the targeted states.

Question 6: can one average over a different spectator state than the ground state
to focus on a particular excited state?

Yes, one can even do a state average calculation over several states, but only at the last
step of a calculation. Otherwise, if one more iteration is performed, the new spectator
state to be used in the computation of the mean field correction may not have the
right physical meaning. So, it will not be suitable for the purpose of building a mean
field Hamiltonian. For example, let us consider a 3 DOF system. Suppose that the
targeted state is the first excited state in DOF number 1. If, at step n, one averages
the Hamiltonian for DOF number 3 over the first excited state of DOF number 1 and
the ground state of DOF number 2, the new ground state so-obtained for DOF number
3 will not be a proper ground state for this DOF, because the true ground state would
correspond to a ground state product mean field. Then, at step-(n + 1), if one uses this
pseudo-ground state for DOF 3, to compute the mean field Hamiltonian for DOF 1 or
DOF 2, an unphysical spectrum will result.

Question 7: the CONVIV code permits to choose between many types of basis
functions, and most types depend upon one or more free parameters. How to
select the type of basis set and adjust the parameters?

It is important to note that there is no universal criterium to decide whether a basis
set is better than another. For a 1-D problem, it seems natural to choose a basis type
corresponding to a model potential that ressembles the exact one. For example, if the
shape of the exact potential is close to that of a Morse potential, it is tempting to use
Morse basis functions. Then, it is likely that, this choice will be close to optimal in
terms of speed of convergence with respect to the number of basis functions. However,
if the aim of the computation is not the best description of a large part of the lower
spectrum with a finite basis set of as small a size as possible, but is, instead, a very
accurate description of a few lower levels, this choice may not be appropriate, since
there are only a finite number of bound states for the Morse potential. It might be more
advantageous to opt for a basis set of harmonic functions with well-chosen center and
frequency, for example. For small basis set sizes, arguably, it will be less accurate
than the Morse basis of the same size. However, it will be possible, in principle, to
add as many basis functions as required to achieve the accuracy goal. Other criteria,
such as the computational cost of calculating Hamiltonian matrix elements could be
considered.

Regarding the optimization of the free parameters, several strategies can be con-
sidered. One can minimize the difference between selected eigenvalues of the 1-D
Hamiltonian corresponding to a 1-D section of the PES and those corresponding to the
model potential. For example, if we consider that, the best frequency for a harmonic
modal basis, is the one for which the largest number of eigenvalues are converged
within the cm−1 accuracy given a fixed number of basis functions, one find that the
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best harmonic modal basis of 50 functions for a Morse potential with parameters,
D = 0.181077 au, a = 0.0242094161 au, has a frequency of about 0.4 times the har-
monic frequency, ν0, of the Morse potential second order Taylor expansion [26]. More
precisely, with an harmonic modal frequency equal to ν0, the first 10 levels are within
the cm−1 accuracy of the exact Morse eigenvalues, whereas with a modal frequency
of 0.4ν0, four more levels are converged.

Alternatively, one can optimize the parameters by fitting the PES to a model poten-
tial below an energy threshold corresponding to the spectral region of interest. Exam-
ples will be provided in the following questions. For a given energy threshold, say
λ, fitting the curves on a large grid of points covering the energy region below λ, or
minimizing the eigenvalues discrepancies below λ, can result in very different sets
of parameters. Again, which parameters are the best, will depend on the aim of the
calculation to be performed using the modal basis set.

Question 8: should one use 1-D sections of the original PES or mean field 1-D
potential curves to optimize modal basis sets?

The problem of choosing modal basis sets is more complicated for a multidimen-
sional system, because the optimal modal basis for a 1-D section of the potential may
not be optimal to describe the couplings with the other DOFs. In a VMFCI context,
the mean field potential of a given DOF, which takes into account the average effect
of the inter-mode couplings, is a priori preferable to the corresponding 1-D section
of the PES, in view of solving the multidimensional problem. As a matter of fact,
it has been shown that the anharmonicity due to inter-mode couplings, not included
in 1-D section of the original potential, usually dominates the anharmonicity due to
intra-mode couplings [27]. Furthermore, Table II of [3] shows that 1-D sections of the
original potential give eigenvalues worse than those of a simple harmonic approxima-
tion in half of the cases, and worse than those obtained from mean field potentials in
all cases.

Mean field potentials for modal basis optimizations depend upon the choice of
spectator ground state basis functions. Harmonic basis functions corresponding to a
quadratic approximation of the PES, though very simple, are in general good enough
to provide qualitatively correct mean field 1-D potential without the need to perform a
single VMFCI calculation. In a few cases, such as mode ν3 in Table II of [3], a better
approximation of ground state spectator modes would be required. This could be the
solution of a step 0 MFCI calculation, or, possibly, the ground state product of better
model potentials for spectator DOFs.

However, a posteriori, the differences between the low-lying eigenvalues obtained
from optimized modal basis with or without mean field, have been found unsignificant
in many cases. For example, in Fig. 1, the differences between the two potential curves
with and without mean field correction, though significant, are much smaller than the
differences of model potentials in Fig. 3, which themselves have little influence on the
lowest levels obtained from VCI calculations, as seen from Table 2.

Other interesting considerations regarding the optimization of modal functions for
a multidimensional Hamiltonian can be found in [28].
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Fig. 1 Q4z -section of Nikitin, Rey, Tyuterev PES [30] transformed to mass-weighted normal coordinates
[35] with and without mean field correction. The differences are much smaller than those between the
harmonic potentials of Fig. 3. The basis sets obtained from the latter have, however, little influence on
low-lying eigenvalues. Energy in cm−1, Q4z in au. The mean field correction was obtained from harmonic
approximations of spectator ground states

Table 2 First levels (in cm−1) of the model potential of Fig. 3 calculated with different basis sets

Harmonic Harmonic-fitted Harmonic-stiff
(ω = 2,776 cm−1) (ω = 2,438 cm−1) (ω = 3,709 cm−1)

n = 15 nmax = 29 n = 15 nmax = 26 n = 15 nmax = 40

1,371.131862 1,371.131862 1,371.131862 1,371.131862 1,371.131862 1,371.131862
4,077.968125 4,077.968125 4,077.968125 4,077.968125 4,077.968242 4,077.968125
6,710.960673 6,710.960668 6,710.960669 6,710.960668 6,710.962240 6,710.960668
9,263.366323 9,263.365816 9,263.365887 9,263.365816 9,263.451570 9,263.365816
11,726.528807 11,726.523475 11,726.524298 11,726.523476 11,727.046640 11,726.523475
14,088.962265 14,088.745990 14,088.778374 14,088.745601 14,099.134388 14,088.745557
16,334.382810 16,332.923383 16,333.286920 16,332.930070 16,369.339290 16,332.921818
18,454.111780 18,429.000686 18,438.080138 18,426.096817 18,701.752450 18,422.067618
20,419.858316 19,867.964685 20,363.938015 19,336.445001 20,929.191041 18,870.637502
22,472.251317 20,443.249132 22,198.833724 20,163.312838 23,972.540279 19,684.482474

The value n = 15 is situated in the middle of the stability region for all types of basis set. The nmax
value represents the maximum number of basis functions before the instability of the 8th level appears.
More digits than significant physically are provided to appreciate numerical convergency. Bold numbers
correspond to non stabilized eigenvalues according to Fig. 4. The digits that differ from those of the lowest
number of each line are italicized

Question 9: how to optimize the modal basis set of an anisotropic degenerate
mode?

When the symmetry group of a molecule is non Abelian, some vibrational modes
can be degenerate, say d-times degenerate, and the d-dimensional section of the PES,
when the other DOFs are at the equilibrium geometry, can be anisotropic. This is the
case for example of the ν2-mode of methane illustrated in Fig. 2 (upper panel).
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Fig. 2 Optimized harmonic modal basis set wave number as a function of angle θ , for the 2-D section
corresponding to the bending mode ν2, of the same methane PES as that used for Fig. 1. The sign conven-
tion for the mass-weighted normal coordinates q2a and q2b are those of Gray and Robiette [36]. The wave
number has been optimized by mean-square fitting of a grid of 23,400 points below 22,000 cm−1 , which
corresponds to coordinate values falling in the interval −60 au , +57 au. The effect of the anisotropy on the
optimized wave number is not important enough to influence significantly the quality of the modal basis
set

However, to perform VMFCI calculations with finite modal basis that do not break
molecular symmetry, the parameters of the modal basis must be the same in the
directions of all the d-degenerate coordinates. So, it is a priori important to choose
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parameters that would give basis functions appropriate in any direction of the d-dimen-
sional potential.

For the ν2-mode of methane, the influence of potential anisotropy on the optimal
frequency of a harmonic basis set, is small enough to be negligible, see lower panel
of Fig. 2. The optimal frequency was determined by mean square fitting the harmonic
potential to the potential curve in direction θ , (see Fig. 2, upper panel), on a grid of
points below an energy of 22,000 cm−1 . The closer to equilibrium, the less the anisot-
ropy, so one expects a larger effect at higher energy. However, even with a larger effect
on the optimal frequency, it is expected, as in the previous question, that the optimal
frequency variations will hardly affect the bottom of the spectrum. So, to answer the
question, in practice, one can choose any direction in the degenerate subspace, and
use the optimal frequency in that direction to construct the modal basis sets in all
d-dimensions.

Question 10: when the PES has non physical regions, as is often the case with
polynomial expansion, can one play on basis set parameters to increase the num-
ber of basis functions having a significant weight only in the physical domain and
improve the description of the bound states?

The PES used in molecular spectroscopy are seldom global ones, having correct
asymptotic behaviors. They are often polynomial expansion, fitted on a grid of nuclear
configuration points relatively close to the equilibrium geometry, or obtained by ana-
lytical or numerical derivatives of an electronic energy expression. In particular, com-
mercial quantum chemistry codes now deliver quartic potential amenable to a second
order perturbative treatment [29]. However, these PES can have spurrious oscillations,
as one goes away from equilibrium, and may even be non bounded from below, which
is an issue for variational methods.

To answer the question, let us consider the model quartic potential of Fig. 3, V (x) =
8∗10−5x2 −1.6∗10−8x4, (in au), whose shape is similar to the 1-D section of a 10th

order potential for methane [30], represented in Fig. 1. We assume that the non phys-
ical region starts beyond the barrier in both directions. We have calculated the bound
levels of this potential by performing VCI calculations with three different harmonic
modal basis corresponding to the harmonic potentials also represented on Fig. 3. The
fitted harmonic potential has been obtained by mean square fitting a grid of points in
the dotted region of the quartic potential.

Figure 4 displays for each modal basis, the first ten VCI eigenvalues for increasing
numbers of basis functions. For all modal basis, the pattern is similar: The levels alter-
nate decreasing phases with stabilizing phases. The first 9 levels stabilize first at the
expected bound state eigenvalues. Then, the levels dive in cascade, that is one after the
other, starting from the highest ones, before stabilizing again, except the two lowest
ones, which appear to dive to minus infinity. If we extrapolate the “Fitted harmonic”
case, for any level, say level n, there is an inflexion when it reaches level n − 1, then
a new stabilization at level n − 2, and so on, with successive stabilizations at levels
n − 2k, as long as, k < n

2 − 1. The highest (n = 10) level also stabilizes at level
n − 2 = 8, once the latter level has dropped.
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Fig. 3 Case-example of a quartic potential unbounded from below and model harmonic potentials whose
eigenfunctions are used as basis functions. For each model potential, a horizontal line represents the energy
level of the highest basis function before the 8th bounded level of the quartic potential drops in Fig. 4. This
highest basis function corresponds to the nmax value of Table 2. The barrier height of the quartic potential
is about 21,947.463 cm−1 . The fundamental wave numbers of the harmonic, model potential are given in
Table 2. This picture gives an idea of how rapidly the different basis sets extend beyond the barrier

According to the Hylleraas, Undheim, MacDonald theorem [31,32], the levels can
only decrease as the number of basis functions increases. This is of course verified.
However, this theorem tells nothing about the pace of the decrease, which is remark-
able in the present case. The observed steps can be interpreted as follows: with a
small number of basis functions, the modal basis is too incomplete to describe the
high bounded levels, specially when the modal frequency has not been optimized: the
further from the fitted frequency, the steepest are the initial slopes. Then, as the basis
set is being completed, the bounded levels tend to converge (first stabilization area).
However, increasing the basis set size eventually adds functions having non negligi-
ble weight in the unbounded region beyond the barrier. The description of the wave
functions of the highest levels is affected first, since they have more overlap with the
newly introduced basis functions. They tend to dive to −∞, however, when a lower
level has already dived, they stabilize to describe the missing bound level, provided it
has the same parity.

So, when there are unbounded regions in the potential, adding more functions can
spoil a variational calculation. One can think of using a stiff frequency to increase
the number of basis functions having negligible weight in the unbounded region. As
a matter of fact, with the stiff harmonic potential of Fig. 3, 40 basis functions can be
used before the 8th level drops, against 26 for the fitted harmonic potential. Let us
analyse the performance of these basis set with the help of Table 2.

For a fixed, limited number of basis functions, columns “n = 15”, the fitted har-
monic modal basis performs the best for all levels. This is somehow expected and
justifies frequency optimization. When the number of functions reaches the instabil-
ity area of the 8th level, one sees that, for all modal basis, the first four levels have
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Fig. 4 VCI energy levels of the quartic potential of Fig. 3, as functions of basis set sizes. The basis functions
are the eigenfunctions for the model potentials of Fig. 3
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converged to the same values, and that levels 9 and 10 have both dropped in accor-
dance with Fig. 4. Regarding levels 5 to 8, it is clear that the fitted harmonic modal
basis, whose maximum number of basis functions is limited to 26, is inferior to the
other basis. Level 5 has converged with both the standard harmonic basis sets (corre-
sponding to the potential quadratic constant) and the stiff harmonic basis set. Levels
6 to 8 obtained with the 40 functions of the stiff harmonic basis are lower than those
of the standard harmonic basis limited at 29 functions. So, the stiff harmonic modal
basis, which is slower to converge the low-lying levels than the other basis, becomes
interesting for the highest bounded levels. However, it is important to note that not all
the digits of these levels are converged. For example, level 6 with 30 standard har-
monic basis function is equal to 14,088.745504 cm−1 , that is to say, it is lower than
all results of Table 2. In particular, this shows that, for this level, a standard harmonic
basis of 30 functions performs better than the stiff harmonic basis of 40 functions.

To conclude this question, we note that, for any modal basis, the number of basis
functions has to be finely tuned to obtain a given level at optimal accuracy. For example,
with the stiff harmonic modal basis set, one would have to use less than 40 functions to
obtain an estimate of level 9, but more than 40 functions would be required to lower the
value of level 6 below the value obtained with 30 standard harmonic basis functions.
For a harmonic basis set (with exponential factor equal to exp(−1/2(Q/a)2)), one
could think of using the relationship, QM = √

2n + 1/a, between the classical spatial
extension, QM , and the quantum number, n, of the level, to determine the appropriate
number of basis functions, given the location of the unphysical region to be avoided.
However, to get truely optimal numbers, one need to draw figures, such as Fig. 4, to
determine the stability area of each level. This is heavy work. So, in the end, the best
treatment is usually to fix the unphysical part of the potential, as has been done, for
example, in [33] for a quartic PES of Formic acid.
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